Effect of activated charcoal on different aspects of poultry performance:
a review

1*Okey, S.N., 1Ogbu, C.C. 2Akomas, S.C. & 2Okoli, I.C.

1Department of Veterinary Biochemistry and Animal Production, Michael Okpara University of Agriculture Umuahia, Nigeria
2Department of Veterinary Physiology & Pharmacology, Michael Okpara University of Agriculture Umuahia, Nigeria

*Corresponding author: nnamuokey@gmail.com, +23407038932128

Abstract
This paper presents a short review of the effects of activated charcoal (AC) on different aspects of poultry performance. Activated charcoal is a solid, porous, tasteless and black carbonaceous material prepared from a variety of carbon containing materials, including agricultural residue. In powder form it acts as adsorbent for many toxins according to physical and chemical nature of the precursor. Several studies reviewed showed AC, as a non-digestible and cheap substance that may be of benefit to poultry gut health, growth and laying performance, especially in the tropics where microbial degradation of feed material is a major threat.

Keywords: Activated charcoal, broilers, layers, poultry performance.

INTRODUCTION
Feed remains the most important component of the cost of production in the intensive poultry sector. Several biotechnology techniques are currently being used to reduce cost and increase poultry productivity. One of the viable methods has been the use of growth promoters such as prebiotics to improve feed efficiency and poultry health. These substances do not contribute to the nutrient needs but are rather used to control pathogenic organisms in the gut. This is desirable in view of the fact that the gut is one of the major organs determining the performance of birds and the economics of production, with the profile of intestinal microflora playing a significant role in gut health. However, most of these substances or natural growth promoters are not readily available to Nigerian poultry farmers who are mostly small-scale producers. Therefore, cheaper alternative additives like activated charcoal and clay minerals (Thacker, 2013) which could be produced on the farm or supplied from a nearby cottage industry will be of value to farmers.

Activated charcoal also called activated carbon or biochar is a solid, porous, tasteless and black carbonaceous material prepared from a variety of carbon containing materials, including agricultural residues. Activated charcoal when ground into fine powder acts as an adsorbent for many toxins with the absorbance being dependent on pore size, surface area, concentration and chemical nature of the precursor (Yahya et al., 2015). Awad et al. (2009) reported that adding activated charcoal to poultry diet can help recover the intestinal integrity, improve gut health and thus increase nutrient availability and absorption. Currently, the use of activated charcoal in poultry production is an emerging research area that is still generating the needed literature for ultimate on-farm application. There is therefore, the need to articulate what is currently known, especially as it applies to poultry production in the tropics.

This paper presents a short review of the effects of activated charcoal on different aspects of poultry performance.

EFFECT ON GROWTH, HAEMATOLOGY AND SERUM CHEMICAL PROFILES
Growth is an increase in mass of a living substance and so, weight change can be considered an index of growth. Odunsi et al. (2007) supplemented wood charcoal into broiler starter and finisher diets and reported that body weight gains and feed conversion ratio (FCR) were significantly better in the control group than those fed charcoal based diets. This is in

http://doi.org/10.54328/covm.josvas.2021.003
agreement with the report of Kutlu et al. (2001) that charcoal supplementation reduces feed intake and feed conversion ratio, with the reduction being attributed to higher bulk density of charcoal supplemented feed (Evans et al., 2015). Majewska and Zaborowski (2003) however reported that AC supplemented birds were 1-6.5% heavier, 5.9% better in their FCR and 1.6% better in their survival rate than the control group. Dim et al. (2018) reported that the final body weight, average daily weight gain and FCR were better in birds on 6% AC inclusion than other groups after 56 days trial period similar to the reports of Kutlu et al. (1999). Dim et al. (2018) also noted that WBC count and PCV were not affected at both the starter and finisher phases, while haemoglobin concentration (Hb) and RBC count were significantly improved and cholesterol and lipoprotein levels were significantly reduced, probably due to the ability of the birds on AC to maximally utilize the vitamin-mineral premix in the diet. No significant differences in high density lipoprotein (HDL) and triglycerides were observed across the treatment groups. Majewska et al. (2009) reported that dietary supplementation of AC at 0.3% did not significantly affect RBC, WBC, Hb and PCV values of broilers fed aflatoxin-B1 contaminated feeds. Majewska et al. (2002) had used charcoal as feed additive to raise turkeys and reported non-significant differences in the serum biochemical indices.

EFFECT OF ACTIVATED CHARCOAL ON CARCASS QUALITY

Kutlu et al. (2001) reported that wood charcoal significantly increased the carcass weight, carcass yield and carcass ash and fat contents in broiler chickens. However, charcoal inclusion to the diet did not affect carcass dry matter and protein contents significantly. Majewska and Zaborowski, (2003) reported that carcass yield, liver, spleen and kidney weights did not show any major variations among the treatment groups though the broilers fed 7.5% wood charcoal had the least percentage carcass yield and abdominal fats, while cut-up parts did not vary across the groups. The lung, heart and gizzard showed slight changes among the treatment groups when compared with the control. This showed that wood charcoal used in the study had no major physiological effects on tissue and organ development and functions when compared with the control. However, a positive development in the reduction of abdominal fat deposition in broilers fed wood charcoal based diets was noticed when compared to the control group. These results with respect to subcutaneous and abdominal fat deposition could indicate lower intake of dietary energy with charcoal inclusion in the diet (Kutlu et al., 2001). This means that as the charcoal level in the diet increases, FCR and fat excretion increases, while fat deposition also reduces.

EFFECT OF ACTIVATED CHARCOAL ON LAYING PERFORMANCE AND EGG QUALITY

The addition of beneficial feed additives such as AC to the diet can help recover the intestinal integrity, improve gut health and thus increase nutrient availability and absorption (Awad et al., 2009) which result to increased laying performance. A mixture of bamboo charcoal powder and bamboo vinegar has been shown to induce a significant increase in egg production by stimulating intestinal functions of laying hens in the early phase of production (Yamauchi et al., 2010). These were attributed to the beneficial effects of the product in promoting intestinal functions which may help to absorb and assimilate more nutrients. In late phase of production, Rattanawut et al. (2017) supplemented with the commercial bamboo vinegar, SuperBob® at 0, 0.5, 1.0 and 1.5% inclusions to the basal diet. They reported no significant differences between the groups with respect to egg shell weight, yolk colour and Haugh (an index of albumen quality).

Kutlu et al. (2001) studied the effects of dietary oak charcoal on laying performance using Hyline breed fed a standard commercial layer diet and supplemented with 0, 10, 20 and 40g ground wood charcoal per kg. There was no effect on egg weight, albumen weight, yolk weight, shell weight, shell thickness and shape index. However, AC supplementation reduced the number of cracked eggs in a dose-related manner which is attributed to the absorption capacity of charcoal for dietary fat and its excretion. Increased fat excretion promoted by charcoal probably enhanced mineral utilization, particularly calcium which promotes shell formation in the shell gland. Charcoal supplementation induced a non-significant reduction in feed intake, egg production and FCR. The lower feed intake was possibly due to higher bulk density and blackening of the diets by charcoal and decrease in palatability (Jindal et al., 1994).

EFFECT OF ACTIVATED CHARCOAL ON EXCRETORY PRODUCTS

Studies by Plank et al. (1990) revealed that wood charcoal increased fat excretion which is expected in view of its binding effect on fat, fat soluble substances and noxious substances that may interfere with digestion. This increased fat excretion could be beneficial in preventing the malfunctioning of the gastrointestinal tract (GIT) associated with poor fat digestion as a result of limited bile synthesis in young birds. This result in addition to reduced carcass fat content and abdominal fat weight suggest reduced intake of dietary energy sources with charcoal inclusion in diet (Kutlu et al., 2001). In other words, as the charcoal level in the diet is increased, the FCR and fat excretion increase, while fat deposition in the body decreases. Activated charcoal inclusion in the diet reduces nitrogen free extract excretion while markedly increasing fiber excretion.
in a dose-dependent manner (Duke, 1986). This means that increased levels of AC in high fibre diet will increase fibre consumption and excretion. The major constituents of dietary fibre are cellulose, hemicellulose and lignin which are poorly digested by birds (Kutlu et al., 2001). Activated charcoal also increases carcass ash content in a dose-dependent manner and this is a reflection of the increased mineral intake (Duke, 1986).

EFFECT OF ACTIVATED CHARCOAL ON GASTROINTESTINAL TRACT

HISTOMORPHOLOGY AND ECOLOGY

Activated charcoal as an adsorbent has the potential to condition the cell membranes, reduce surface tension by eliminating gases and toxins in the GIT to improve absorption and utilization of nutrients (Majewska et al., 1999). Broiler chickens fed 1% bamboo charcoal diet recorded the highest body weight with the jejunal villus height and area being higher than those of other groups (Xia et al., 2004). Increased villus height is indicative of a greater absorptive surface area and a better capacity of absorbing available nutrients. Villus height is increased by enhanced efficiency of digestion and absorption in the small intestine due to increased population of beneficial bacteria that supply nutrients and stimulate vascularization and development of the intestinal villi (Gilmore & Ferretti, 2003). Choc (2009) reported a shorter villus when the counts of pathogenic bacteria increased in the GIT, which results in fewer absorptive and more secretory cells. It has been suggested that there is a strong correlation between gut structure and type of feeding materials and that villus height can be used to predict weight gain. A commercial charcoal product, NeR® CarbonRich® was fed as prebiotic to leghorn chickens and it reduced significantly Salmonellae recovered from the large intestine and faecal samples.

CONCLUSION

Activated charcoal, a non-digestible and cheap substance may be of benefit to poultry gut health, growth and laying performance, especially in the tropics where microbial degradation of feed is a major threat.

REFERENCES

Article history:
Received: May 5, 2021,
Revised: July 2, 2021
Accepted: July 5, 2021